Γ <u></u>	Roll No Total No. of Pages: 3
89	***************************************
1 2	410701/410801
7	B. Tech. IV - Sem. (Main / Back) Exam., (Academic Session 2021-2022)
18	Electronics & Communication Engineering
410701/410801	4EC2 – 01/4EI2 – 01 Advanced Engineering Mathematics - II Common to ECE & EIC
Time: 2	2½ Hours Maximum Marks: 120 Min. Passing Marks:
Instruc	tions to Candidates:
Part – .	A: Short answer questions (up to 25 words) 6×3 marks = 18 marks. Candidates have to answer six questions out of ten.
Part –	B: Analytical/Problem solving questions 3×10 marks = 30 marks. Candidates have to answer three questions out of seven.
Part –	C: Descriptive/Analytical/Problem Solving questions 3 ×24 marks = 72 marks. Candidates have to answer three questions out of five.
	Schematic diagrams must be shown wherever necessary. Any data you feel missing may suitably be assumed and stated clearly. Units of quantities used/calculated must be stated clearly.
	Use of following supporting material is permitted during examination (Mentioned in form No. 205)
1. <u>NIL</u>	2. <u>NIL</u>
	PART – A
~ /	efine invariant points of bilinear transformation.
•	efine harmonic function, check whether $3x^2y-y^3$ is harmonic or not?
Q.3 Sta	ate Cauchy's theorem.
	rite Legendre's differential equation.
Q.5/Giv	ve an example of, when a transformation is said to be conformal.

Page 1 of 3

[410701/410801]

Q.6 Write generating function for Bessel's function.

Q₁7 Write the matrix of the quadratic form $x^2 + 2y^2 + 3z^2 + 4xy + 5yz + 6zx$.

Q.8 Define characteristic polynomial with an example.

Q. Give an example of, when a set of vectors is said to be linearly independent.

Q.10 Define pole and residue at pole.

PART - B

Q. 1/2 (a) Prove that a bilinear transformation maps circles into circles.

(b) Prove that a bilinear transformation preserves the cross ratio of four points.

Q.2/13/ If f(z) is an analytic function of constant modulus, show that f(z) is constant.

If the potential function is $\log (x^2 + y^2)$, find the flux function and complex potential function.

Q.3 Prove that -

(a)
$$\int_{\frac{1}{2}} (z) = \sqrt{\frac{2}{\pi z}} \sin z$$

(b)
$$\int_{\frac{1}{2}} (z) = \sqrt{\frac{2}{\pi z}} \cos z$$

Q.4 By integrating around a unit circle, evaluate $\int_0^{2\pi} \frac{\cos 2\theta d\theta}{1-2a\cos\theta+a^2}$, where $a^2 < 1$.

Q.5 Prove that all the roots of $P_n(x) = 0$ are real and lying between -1 and 1.

Find the Eigen values and Eigen vectors of the matrix
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
.

Extend $\{(2, 3, -1), (1, -2, -4)\}$ to an orthogonal basis of the Buclidean space \mathbb{R}^3 with standard inner product and then find the associated orthonormal basis.

PART - C

Show that $f(z) = \sinh z$ is an analytic function. Find its derivative.

If f(z) is a regular function of z, prove that -

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|^2$$

Q.2. Prove that -

- $J_{-n}(z) = (-1)^n J_n(z)$, when n is a positive integer.
- (ii) $J_n(-z) = (-1)^n J_n(z)$, for positive or negative integer n.
- (iii) $J_n(z)$ is an even or odd function according as n is even or odd respectively.

Q.3 State and prove the orthogonality property of Legendre's polynomial.

Q.4 (a) Reduce the quadratic form $5x^2 + y^2 + 10z^2 - 4yz - 10zx$ to the canonical form.

Find the QR-decomposition of the matrix $A = \begin{bmatrix} 5 & 7 \\ 2 & -2 \\ 4 & 6 \end{bmatrix}$

Q.5 Find $\int_c z^2 dz$, where C is the curve passing through the points 1+i and 2(1+2i) and specified

(i) the arc
$$y = x^2$$

(ii) the arc $y = x^2$ (iii) the straight line joining the points 1+i and 2(1+2i)

(iii) the arc of $z = t + it^2$

[410701/410801]

Page 3 of 3